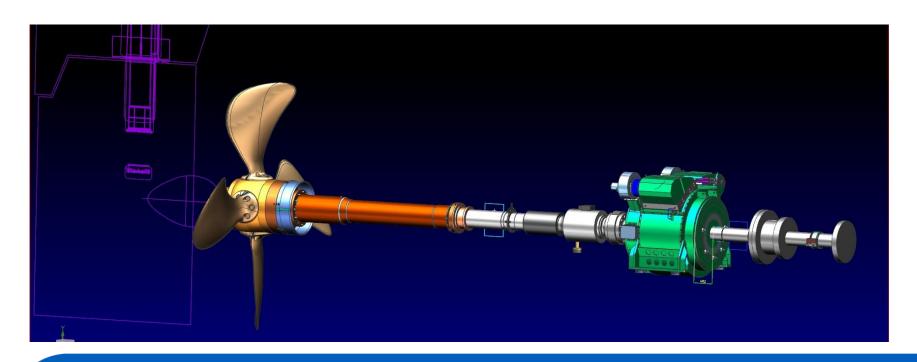
WE Tech Energy Efficiency improvements in shipping 13.10.2015 WE Tech Solutions Oy / Mårten Storbacka

Drivers for improving energy efficiency in shipping – why is this interesting?

- ☐ Operational cost reduction IMPROVE COMPETITIVENESS
 - ☐ Fuel (bunker) is about 60-70 % of operational costs
 - ☐ Reduce fuel consumption and you are more competitive
 - ☐ Reduce fuel consumption and you reduce your environmental impact

- Environmental impact reduction CLEANTECH
 - ☐ Cleantech: Energy efficiency improvement through technology
 - ☐ Reduce fuel consumption and also reduce emissions
 - ☐ Implement Cleantech in your business and become more competitive

Cleantech for shipping – todays presentation:


☐ Short introduction of hybrid propulsion systems ☐ Variable speed Shaft Generator ☐ Shaft Generator as booster motor and Take Me Home device ☐ DC-link distribution systems ☐ Variable speed Auxiliary Generators and battery systems ☐ LNG as fuel – additional flexibility with shaft generator

☐ Cargo handling operations with variable speed shaft generator

About WE Tech Solutions Oy

- WE deliver energy efficiency solutions to shipping industry
- **□** WE create savings in operational cost for ship owners and operators
- **□** WE are a strong player with global presence
- **□** WE deliver proven technologies
- **□** WE BRING THE NEXT LEVEL IN ENERGY EFFICIENT SHIPPING 30 / 2030

Our Services

Turnkey deliveries of energy efficiency upgrading solutions for existing fleets

- Engineering and delivery of energy efficiency solutions for new build series
- Energy efficiency analysis of propulsion machinery and electrical systems
- **Project management services**
- **Installation services**
- **Commissioning services**
- After sales services

Our Technology

- □ Active Front End frequency drive technology WE DriveTM
- □ Permanent magnet generator/motor technology
- ☐ Controls: Dedicated power management systems DPMS

Omron NJ series controller

WE Tech NXA series WE Drive™

The Switch PMM 1000

WE Tech Network of companies in Vaasa, Finland

Permanent Magnet
Generator / Motor
manufacturing and testing.
> 200 Employees globally.

Switchboard / WE DriveTM manufacturing and testing. > 360 Employees globally.

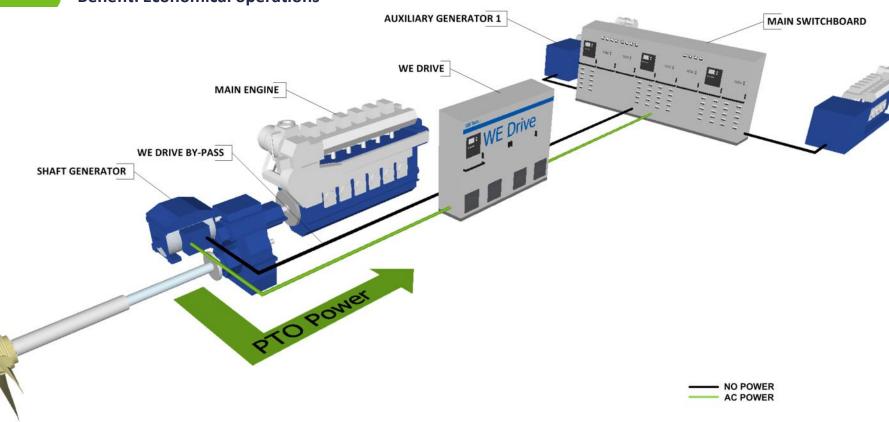
Frequency Drive manufacturing and testing. > 1600 Employees globally.

Source: Vaasa Airport Park

www.wetech.fi

WE Tech Solutions:

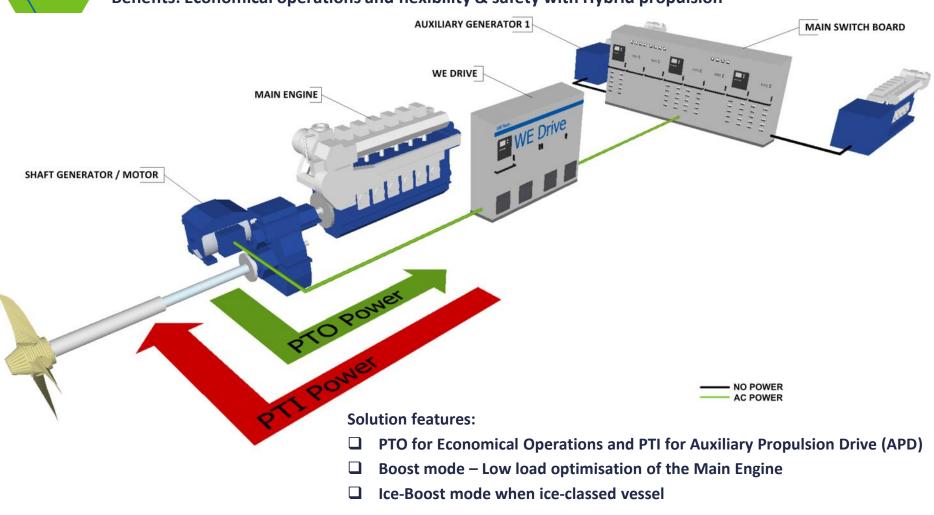
Improved Energy Efficiency in machinery - compared with pre-2008 designs


Solution Five	WE Drive	Shaft Generator/ Motor	Hybrid Machinery	Ship wide DC Bus	Power Distribution
Solution Four	WE Drive	Shaft Generator/ Motor	Hybrid Machinery	DC-link Power Distribution	
Solution Three	WE Drive	Shaft Generator/ Motor	Boost Mode		
Solution Two	WE Drive	Shaft Generator/ Motor	Take Me Home		
Solution One	WE Drive	Shaft Generator		EI	NERGY EFFICIENCY
	Economical Operations		Hybrid Machinery	Efficient Power Distribution	Hybrid DC Machinery
		+15 %	% +2	0 % +2	5 % +35 9

Variable speed Shaft Generator

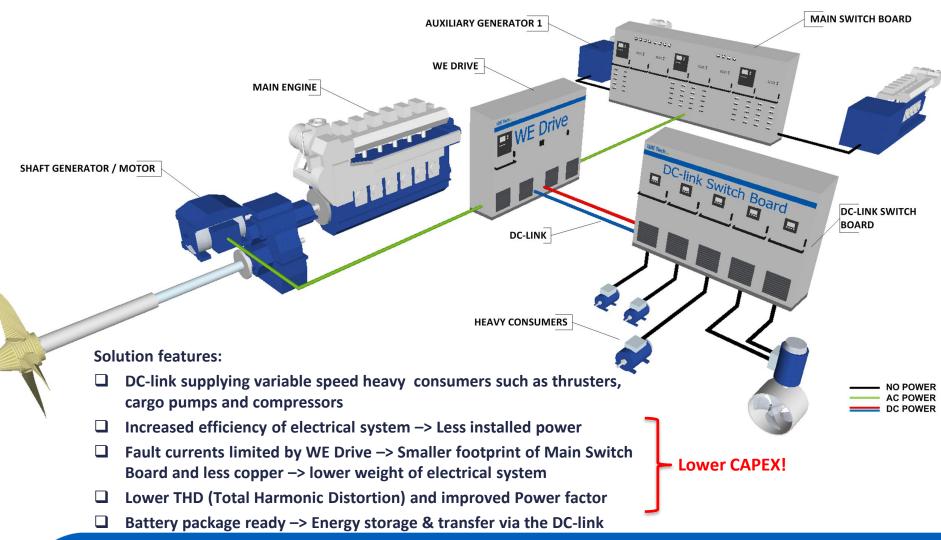
Benefit: Economical operations

Solution features:


- Economical operations utilizing energy efficient Main Engine for electrical power generation
- ☐ Stopped Aux. Generators during sailing -> Electrical power generated with 40-50 g/kWh less fuel consumed
- ☐ WE DriveTM allowing variable speed of the propulsion machinery -> optimal operation of propeller

Shaft Generator as booster motor and Take Me Home device

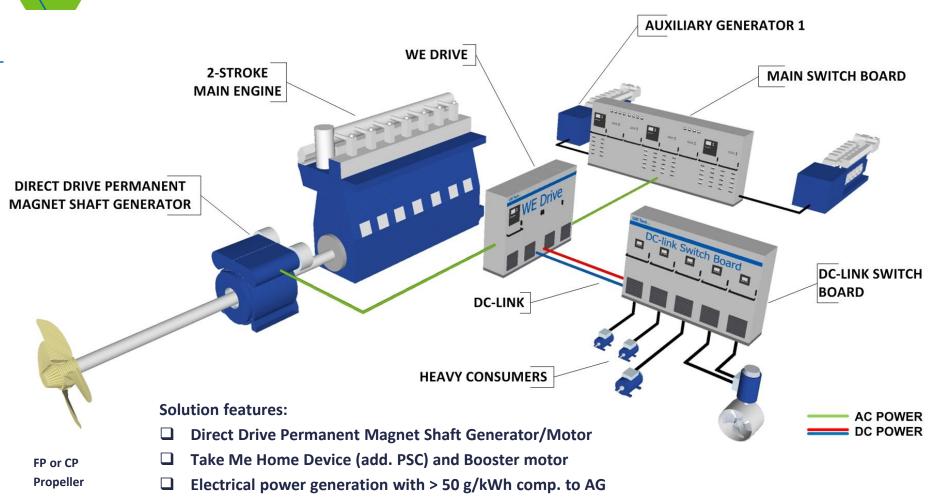
Benefits: Economical operations and flexibility & safety with Hybrid propulsion



DC-link distribution systems

Benefits: Economical operations, Hybrid propulsion and efficient power distribution

Variable speed Auxiliary Generators and battery systems


Benefits: Safety, flexibility and economy NAVIGATION AND WE DRIVE AG1 **AUTOMATION SYSTEM POWER SUPPLY AUXILIARY** WE DRIVE SG **GENERATOR 2 MAIN ENGINE SHAFT GENERATOR / MOTOR** AC Distribution Panel DC-LINK SWITCH BOARD B DC-LINK **AC DISTRIBUTION PANEL 2 HEAVY CONSUMERS Solution features:** Ship wide DC bus power distribution Hybrid type propulsion for safety, flexibility and economy

Hybrid propulsion solution for 2-Stroke Main Engine

Benefits: As previous e.g. Economical operations, Hybrid propulsion and efficient power distribution

2-Stroke Main Engine Solution One: Direct Drive Permanent Magnet Shaft Generator

☐ Electrical power generation from Direct Drive Shaft Generator – example:
1400 TEU Container vessel

- ☐ Conventional: Electrical power generated by Auxiliary Generating-sets:
- ☐ SFOC: Abt. 220 g/kWh *
- ☐ Energy efficient: Electrical power generated by fuel efficient 2-stroke Main Engine:
- ☐ SFOC: Abt. 160 g/kWh *

Difference:

- ☐ Sailing 5200 hours / annually (60 %)
- With a typical electrical load of 1500 kW
- ☐ Aux. Gen-sets consumes 1716 ton/annually
- DD Shaft Generator consumes (via ME) 1248 ton/annually

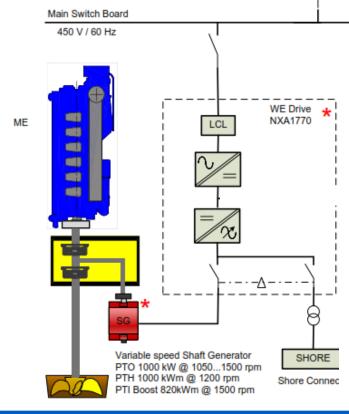
468 tons of bunker annually

= 27 % savings with Shaft Generator

^{*)} HFO figure, typical

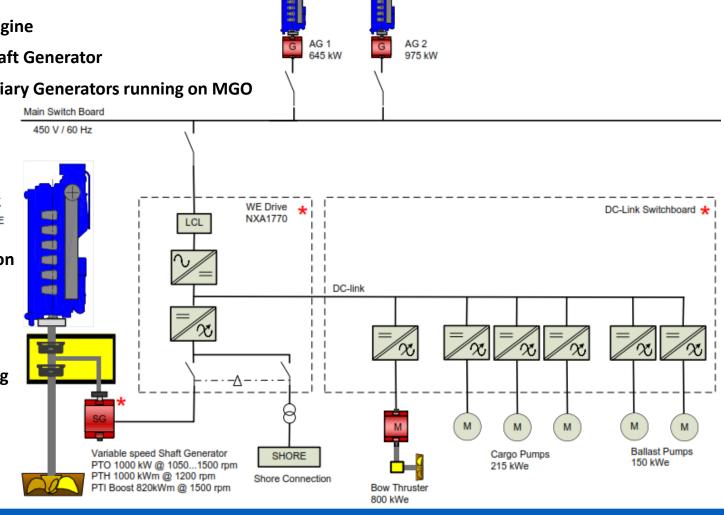
LNG as fuel – additional flexibility with shaft generator

13.10.2015


AG 1

645 kW

AG 2


975 kW

- **Dual Fuel Main Engine**
- **Variable speed Shaft Generator**
- **Optimal size Auxiliary Generators running on MGO**

Cargo handling operations with variable speed shaft generator

- **Dual Fuel Main Engine**
- **Variable speed Shaft Generator**
- **Optimal size Auxiliary Generators running on MGO**
- DC-link distribuiton
- Cargo pumps on DC-link
- Cargo handling with DF Main Engine – running on optimal speed
- Shore connecton ready
- Aux. Generators only as backup in cargo handling

References

m/v Miranda

Type: Ro-Ro vessel

Owner: Godby Shipping Ab

Solution: Economical Operations upgrade (PTO, Solution One)

Delivery: Q4 2010

m/v Mistral

Type: Ro-Ro vessel

Owner: Godby Shipping Ab

Solution: Economical Operations upgrade (PTO, Solution One)

Delivery: Q1 2011

m/v Bore Sea

Type: Ro-Ro vessel Owner: Bore Ltd

Solution: Economical Operations upgrade (PTO, Solution One)

Delivery: Q2 2012

m/v Seagard

Type: Ro-Ro vessel Owner: Bore Ltd

Solution: Economical Operations upgrade (PTO, Solution One)

Delivery: Q2 2013

m/v Kallio

Type: General cargo vessel Owner: ESL Shipping Ltd

Solution: Economical Operations upgrade (PTO, Solution One)

Delivery: Q3 2014

m/v Bore Song

Type: Ro-Ro vessel Owner: Bore Ltd

Solution: Economical Operations upgrade (PTO, Solution One)

Delivery: Q1 2015

References (cont.)

Zelenodolsk NB 111

Type: Coastguard Vessel Owner: Russian Coastguard

Solution: Economical operations & Loitering mode (PTO/PTI, Solution Two)

Delivery: First vessel Q2 2013

Type: Post-Panamax sized Pure-Car-Truck-Carrier (PCTC) vessels

Owner: Wallenius Marine

Solution: Direct Drive Permanent Magnet Shaft Generator (PTO/PTI Boost mode)

Delivery: First vessel Q2 2015

A series of 4 newbuilding vessels ordered by AVIC Dingheng Shipbuilding Co., Ltd.

Type: 15000 DWT Product Tanker Owner: Terntank Rederi A/S

Solution: Direct Drive Permanent Magnet Shaft Generator (PTO/PTI Take Me Home mode)

Delivery: First vessel Q2 2015

A series of 2 newbuilding vessels ordered by Besiktas Gemi Insa A.S.

Type: 15100 DWT Asphalt Carrier/Product Tanker

Owner: Transport Desgagnés Inc.

Solution: Direct Drive Permanent Magnet Shaft Generator (PTO/PTI Take Me Home mode)

Delivery: First vessel Q4 2015

A series of 2 newbuilding vessels ordered by Jiangsu Hantong Ship Heavy Industry

Type: 68000 DWT SUL Bulk Carrier

Owner: Vulica Shipping

Solution: Direct Drive Permanent Magnet Shaft Generator (PTO mode)

Delivery: First vessel Q2 2016

A series of 2 newbuilding vessels ordered by Turkish RMK Marine

Type: 9400 DWT Asphalt/Bitumen Tanker

Owner: Tarbit Shipping AB

Solution: Permanent Magnet Shaft Generator and DC Power Distribution

Delivery: First vessel Q2 2016

LIE Tech CREATING SAVINGS

WE Tech Solutions Oy

Wolffintie 36 M10 FI-65200 Vaasa FINLAND Mårten Storbacka

Managing Director

Martin Andtfolk

Sales Manager

Bjarne Lindfors

Sales Representative

Phone: +358 40 542 1594

Email: marten.storbacka@wetech.fi

Phone: +358 50 516 3830

Email: martin.andtfolk@wetech.fi

Phone: +358 40 830 7701

Email: bjarne .lindfors@wetech.fi

WE Tech